Personal Exposure Monitoring Meets Risk Assessment: The South Baltimore Community Exposure Study

U.S. EPA Regional/ORD

Workshop on Air Toxics Exposure Assessment

San Francisco

June 27, 2002

Devon Payne-Sturges, DrPH


payne-sturges.devon@epa.gov

Office of Policy, Economics and Innovation

U.S. EPA

Outline

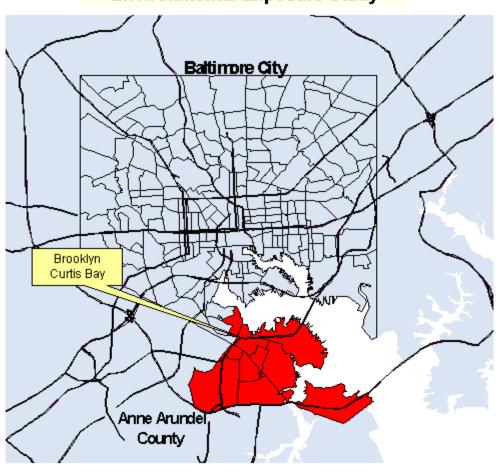
- Background, Objectives, Methods
- Results
 - Air Monitoring
 - Distributions: Indoor, Outdoor, Personal
 - Comparison of S. Baltimore with ASPEN model
 - Risk Estimates
- Policy Implications

Problem Statement

• Assessment of health impacts to HAPs is limited by the uncertainty in exposure estimates based on fix-site ambient monitoring or models that use ambient concentrations to estimate exposure.

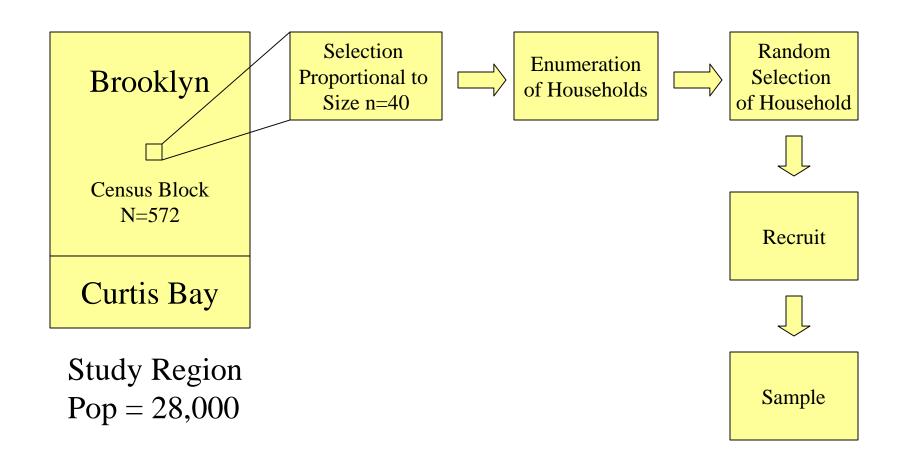
2 Questions

- Do results from ambient air modeling provide adequate estimate of actual ambient HAP concentrations, for VOCs?
- Are modeled or actual ambient air quality measures adequate estimators of personal exposure for use in risk characterization and thus adequate providers of the best understanding of where our environmental health policies need to be directed to reduce exposures and health risks?


Study Objectives

- Characterize potential ambient exposures to 12 VOCs according to EPA's ASPEN 1996 model results
- 2. Measure and characterize actual human exposures to 12 VOCs in South Baltimore
- 3. Compare ASPEN model results with indoor, outdoor and personal exposure monitoring results
- 4. Characterize potential public health risks

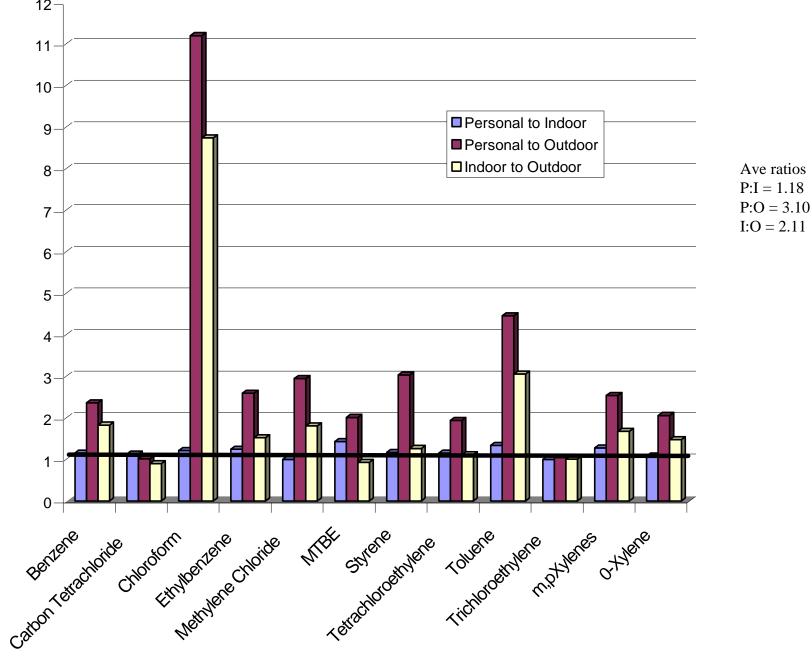
Methods

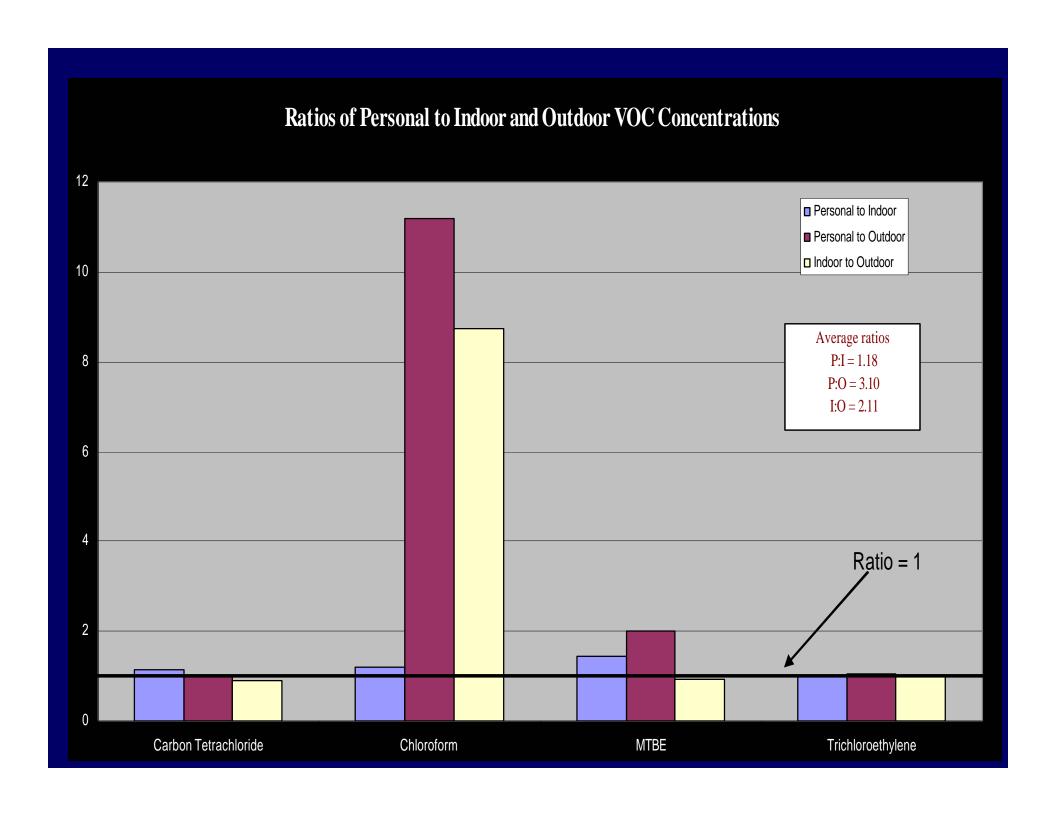

- A random sample of 37 non-smoking adult residents were recruited into the study, but lost 1, n=36; 10 repeats
- Passive air samplers manufactured by 3M (OVM #3500 badges) were used
- 72-hour time-weighted personal exposure, indoor and outdoor VOC concentrations in units of ?g/m³
- 12 VOCs (all hazardous air pollutants)
- Gas chromatography/mass spectrometry analysis
- 3 questionnaires baseline, technician walkthrough, time-activity
- Abstracted Maryland data from 1996 ASPEN results
- Estimated cumulative cancer risk based on EPA's CEP approach

The South Baltimore Community Environmental Exposure Study

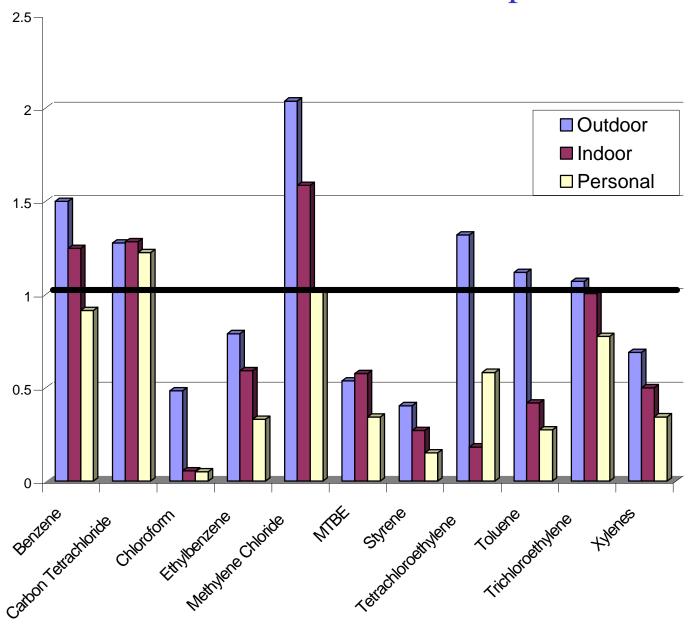
Survey Design Approach

Population-based Representative Sampling

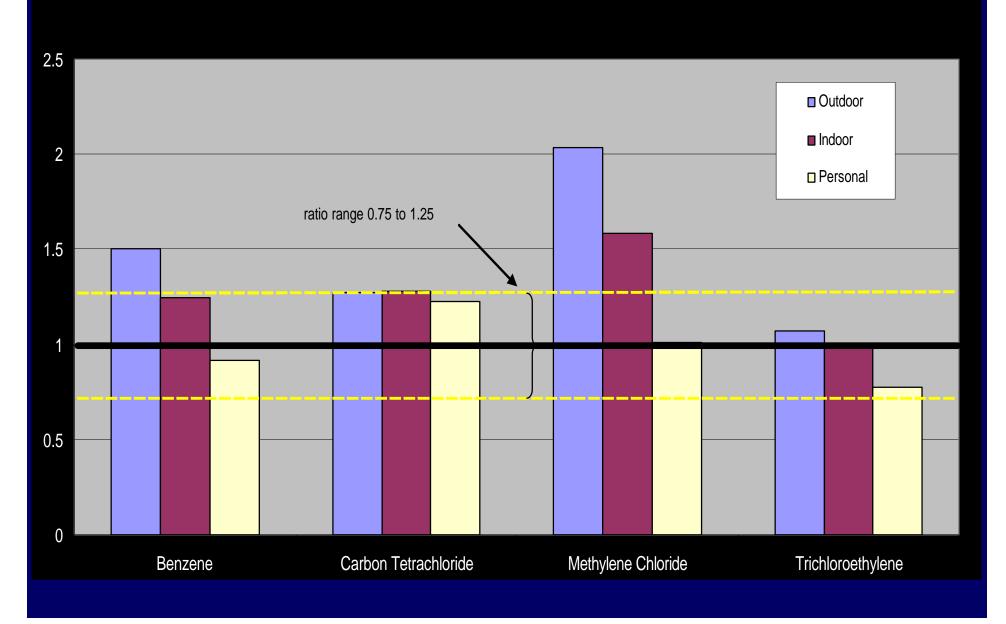



Target Analytes

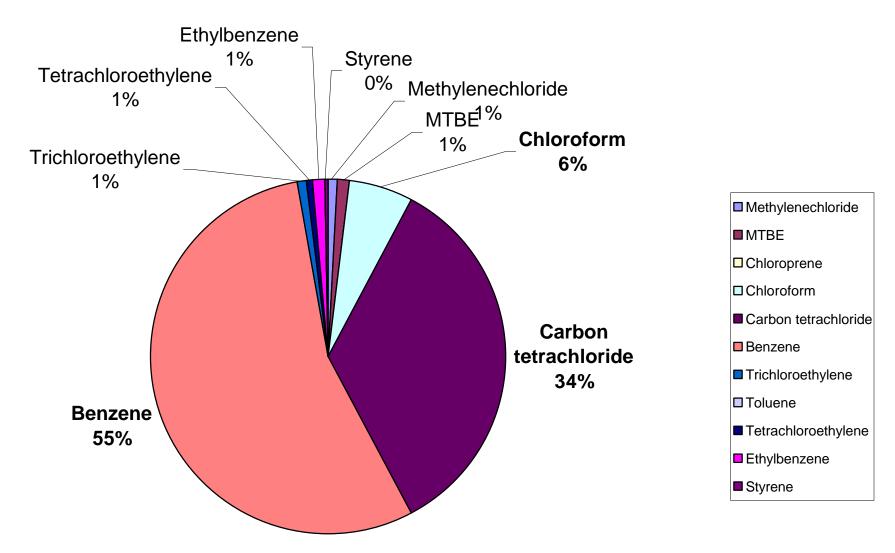
	EPA	Toxicity Values		
	Cancer	Cancer	Non-Cancer	
	Classification	One per Million		
		Cancer Risk	RfC	
		concentration		
Pollutant		ug/m3	ug/m3	
Benzene	A	0.12	71	
Carbon Tetrachloride	B2	0.067	2.4	
Chloroform	B2	0.043	35	
Ethylbenzene	D	2	1000	
Methylene Chloride	B2	2.1	3000	
MTBE	D	2	3000	
Tetrachloroethylene (perc)	B/C	1.9	35	
Toluene	D		400	
Trichloroethylene (TCE)	B/C	0.59	640	
Styrene	С	2	2	
Xylenes	D		300	

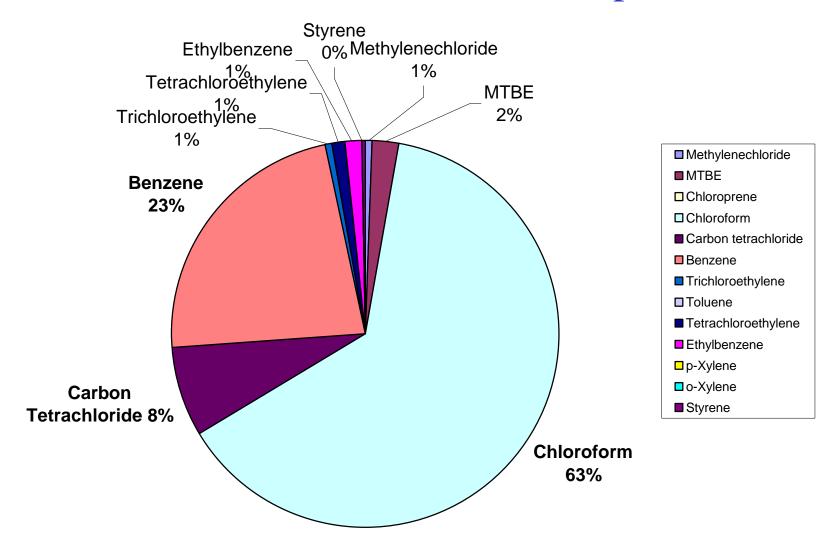

Source: EPA Air Toxics Website www.epa.gov/ttn/atw; Caldwell, et al. 1998. "Application of Health Information to Hazardous Air Pollutants Modeled in EPA's Cumulative Exposure Project. Toxicology and Industrial Health. 1998 14(3): 429-454.

Median Ratios of Personal to Indoor to Outdoor



Ratios of ASPEN to Actual Exposures


Ratios of ASPEN to Actual Expsoures for Outdoor, Indoor and Personal VOC Exposures


Comparison of Cumulative Cancer Risk by Exposure Category

	Cumulative Risk			Number of Cancer Cases			
	(risk per 1 million)			(over a lifetime)			
	Min	Ave	Max	Min	Ave	Max	
Personal Exposure	32	141	837	1	4	23	
Indoor Concentrations	26	127	722	1	4	20	
Outdoor Concentrations	16	44	234	0	1	7	
ASPEN Model	30	38	55	1	1	2	

Proportion of Each VOC to Cumulative Cancer Risk Based on ASPEN Model Concentrations

Proportion of Each VOC to Cumulative Cancer Risk Based on Mean Personal Exposures

Summary of Findings

- 1. Community Exposures are Consistent with Earlier Studies on Human Exposure to VOCs
- 2. Modeled Ambient VOC Concentrations are Adequate for Human Exposure for some
- 3. Modeled Ambient VOC Concentrations Generally Underestimate Human Exposure
- 4. Underestimation of Exposure Leads to Significant Underestimation of Cumulative Cancer Risk

Limitations

- The study examined exposures to a limited number of air pollutants and therefore any conclusions will be restricted to those compounds
- Short-term exposures assumed representative of long-term exposures

Strengths

- Population-based random sample
- Measured exposure close to the individual
- Cumulative risk analysis

Take Home Messages

- Validate models with actual exposure data
- ASPEN does well for what it was designed to do – ambient VOC concentrations
- ASPEN ok as exposure surrogate for air pollutants with large mobile source and no significant indoor sources

Take Home Messages

- Risk assessment is a tool that exposure scientists should apply to interpret human exposure data
- Risk assessment can help prioritize which pollutants should be targeted for interventions to reduce exposures and health risks
- Focus on ambient VOC exposures will not completely address health risks

Acknowledgements

U.S. EPA Region 3Mickey Leland Center for Urban Air ToxicsRisk Science and Public Policy Institute

Concerned Citizens for a Better Brooklyn
Community Advisory Committee
Study Participants

% > Method Limit of Detection

Percentage of VOCs with Measurements Greater than Method Limit of Detection

VOC Pollutant	Personal	Indoor	Outdoor
	%> LOD	%> LOD	%> LOD
Benzene	100.00%	91.67%	75.00%
Carbon Tetrachloride	100.00%	100.00%	100.00%
Chloroform	100.00%	100.00%	61.11%
Ethylbenzene	97.14%	83.33%	72.22%
Methylene Chloride	71.43%	55.56%	25.00%
MTBE	100.00%	97.22%	97.22%
Styrene	85.71%	63.89%	19.44%
Tetrachloroethylene	80.00%	72.22%	63.89%
Toluene	100.00%	94.44%	69.44%
Trichloroethylene	51.43%	52.78%	25.00%
m,p- Xylenes	100.00%	100.00%	97.22%
o-Xylene	85.71%	86.11%	80.56%

Comparing ASPEN and Exposure Results

- Inter-quartile ranges overlap
- Ratios of Medians
- ASPEN judged good performance if the under/over estimations were no more than 25% of median exposures (ratios of the medians ranging from 0.75 to 1.25)

Comparison of Median ASPEN Model and Exposure Concentrations

For South Baltimore

ug/m3

VOC Pollutant	Exposi	ure Source Cat		ASPEN*	
	Outdoor	Indoor	Personal		Model
Benzene	1.58	1.90	2.59	2.37	2.38
Carbon Tetrachloride	0.69	0.69	0.72	0.88	0.98
Chloroform	0.20	1.72	1.94	0.09	0.10
Ethylbenzene	1.02	1.36	2.43	0.80	0.80
Methylene Chloride	0.35	0.45	0.70	0.71	0.73
MTBE	3.94	3.67	6.18		2.24
Styrene	0.25	0.37	0.67		0.09
Tetrachloroethylene	0.27	1.93	0.60		0.38
Toluene	4.36	11.66	17.77	4.87	5.12
Trichloroethylene	0.17	0.18	0.23	0.18	0.19
Xylenes	4.79	6.58	9.57		3.25

Comparison of Ratios and Correlation Coefficients

VOC Pollutant	Personal to Indoor		Personal to Outdoor		Indoor to Outdoor	
	Ratio	r	Ratio	r	Ratio	r
Carbon Tetrachloride	1.12	0.64	1.01	0.59	0.90	0.60
MTBE	1.43	0.6	2.01	0.30	0.93	0.54
TCE	1.00	0.67	1.05	0.33	1.00	0.39